

Event Handling MiServer 3.0

Overview

Event handling allows you to specify what actions are to be taken when a particular event occurs in a

MiPage. Examples of events include:

 When the value of an input field is changed

 When a button is clicked

 When the mouse hovers over a particular page element.

There are two fundamental ways to handle events in a web application –

 In the browser – this generally involves writing some JavaScript for your event handler

 Communicate the event back to the server – unlike a native GUI application where all elements

of the user interface are directly accessible from the application code, the separation between

the browser and the server can require some thought about what information to send to the

server from the client.

MiServer event handling allows you to use either method. MiServer's event handling is based upon

jQuery's on() method. For more advanced event handling, it's a good idea to read up on jQuery on().

Event Handling MiServer 3.0

Simple Example

The following code implements a simple MiPage that contains a button and a <div> that displays the

number of times the button is clicked.

:Class HandlerSample : MiPage

 Clicked←0 ⍝ track the number of time the button is clicked

 ∇ Compose;btn
 :Access public
 btn←Add _.button'Click Me' ⍝ add a button to the page
 btn.On'click' ⍝ define a 'click' handler on the button
 '#output'Add _.div Clicked ⍝ add a <div> to contain the response from the server
 ∇

 ∇ r←APLJax
 :Access public
 Clicked+←1 ⍝ increment the number of times clicked
 r←'#output'Replace Clicked ⍝ and refresh the content of the <div>
 ∇

:EndClass

This illustrates the basic steps you will generally use to create an event handler:

1) Create some HTML content – in this case a button -

btn←Add _.button'Click Me'

2) Create a handler that's bound to the HTML content -

btn.On'click'

In creating the handler, you'll generally specify:

 What events handler will react to ('click' in this case)

 Whether the event will be handled in the client or on the server – by default events are

handled on the server by a method named APLJax

 If the event is to be handled on the server, what data is to be sent to the server. In this

example we don't need to send any data to the server.

There are other event handler attributes that you can specify, but we'll cover those later on.

3) Write the callback code for the handler.

∇ r←APLJax
 :Access public
 Clicked+←1 ⍝ increment the number of times clicked
 r←'#output'Replace Clicked ⍝ and refresh the content of the <div>
∇

If the event is handled on the server, the callback code can send a response back to the client to

do things like update the web page's content or execute code in the web page. In this case we

replace the contents of the element with id="output" (the div we created in Compose) with the

new number of clicks.

Event Handling MiServer 3.0

Specifying an Event Handler

There are two techniques to specify an event handler:

 Use the “On” method for an element.

btn←'b1' Add _.button 'Click Me'
btn.On 'click'

 Add a Handler to the object

Add _.Handler '#b1' 'click'

_.Handler

All pages, HTML elements, and widgets in MiServer are based on the HtmlElement class. The

HtmlElement class has a public field, Handlers, which is a vector of the event handlers bound to the

element. The event handlers are instances of the _.Handler class.

_.Handler Public Fields

The table below summarizes the public fields in _.Handler. Fields you're more likely to use are listed

higher in the table. Fields listed in "grayed" rows are for more advanced use and not likely to be used in

most cases. More detailed discussion follows.

Field Description Default Value
Selector Either:

 A character vector of the jQuery/CSS selector(s) for
the elements

 A 2 element vector of character vectors of
[1] the jQuery/CSS selector(s) for the elements
[2] the jQuery/CSS selector(s) for delegated elements

 A reference to the element to which the event
handler is to be bound

''

Events The event(s) for which handler will respond ''
Callback One of:

 1 – handle the event on the server by calling the
APLJAX function

 'name' – handle the event on the server by calling
the user defined function name

 0 – do not callback to the server, handle the event in
the client

1

ClientData Specifies the data you want sent to the server from the client ''
Delegates A character vector of the jQuery/CSS selector(s) for delegated

elements (can also be specified as the second element of
Selector)

JavaScript JavaScript to execute. If making a callback to the server this is
executed prior to making the callback.

''

Page The URL to which the server callback is directed. current page

Event Handling MiServer 3.0

Hourglass Boolean which indicates whether to turn the cursor to an

hourglass while the server executes the handler.

1

jQueryWrap Boolean which indicates whether to wrap the handler
definition in code such that it will be defined and bound
when the web page is loaded.

1

ScriptWrap Boolean which indicates whether to wrap the handler
definition in a <script> element.

1

ForceInternal Indicates whether to treat the event as an internal event in a
widget. One of:

 ¯1 – determine by seeing if the event is an element of
the widget's InternalEvents list

 0 – do not treat it as an internal event

 1 – force it to be treated as an internal event

¯1

WidgetDef Used to define the syntax for specific types of information for
different JavaScript utility libraries.

jQuery

Selector

Selector specifies what elements the event listener is to be bound to. For instance, assume we've

created the following div element.

myDiv←'#myid' '.myclass' Add _.div 'Click Me'

When using myDiv.On to specify the handler, Selector is set for you.

myHandler ← myDiv.On 'click'

If you specify Selector yourself it can be:

 A reference to the element

myHandler ← Add _.Handler myDiv 'click'

 A jQuery/CSS selector (see jQuery Selectors)

o Bind the listener to the element with id="myid"

myHandler ← Add _.Handler '#myid' 'click'

o Bind the listener to all elements with class="myclass"

myHandler ← Add _.Handler '.myclass' 'click'

o Bind the listener to all <div> HTML elements

myHandler ← Add _.Handler 'div' 'click'

o You can specify multiple selectors

myHandler ← Add _.Handler '#myid, td' 'click'

Will bind the listener to the element with id="myid" AND all <td> elements.

 An empty vector '' or '⍎document' – to bind the handler to the entire document.

myHandler ← Add _.Handler '' 'click'

http://www.w3schools.com/jquery/jquery_ref_selectors.asp

Event Handling MiServer 3.0

Events

Events specifies what events the event listener should listen for. It is a space-delimited list of events.

myHandler.Events←'click' ⍝ listen for click
 myHandler.Events←'click dblclick' ⍝ listen for click and dblclick

The events that you can specify include jQuery and HTML events. When using HTML events, you can

drop the leading "on" – in other words, instead of "oncopy" you would specify "copy" for the event

name.

You can also define your own events and use jQuery's trigger() method to trigger them in the client –

see _.Timer for an example of this.

Callback

Callback specifies where the event is to be handled. Valid values for Callback are:

 1 (the default) – handle the event on the server by calling a function named APLJax

 'Name' – handle the event on the server by calling a function named Name

 0 – handle the event in the client

If you have a simple page with a single handler, using the default behavior and using APLJax. However,

if you have several handlers you may want to write separate

ClientData

ClientData specifies what information is to be sent from the client to the server.

See the section on ClientData found later in this document.

Delegates

Delegates are used in jQuery's event handling framework primarily to address two circumstances.

 When the same event is to be bound to a large number of elements. For instance, every cell in a

large table. Rather than internally bind a handler to every cell, it's more efficient to bind one

handler to the table element itself and then specify the cells as delegates.

 When dynamic elements need handlers bound to them. Event handlers are bound when the

page is loaded. If, after it's loaded, a page creates new elements that need event handling, then

you must use delegates.

See https://learn.jquery.com/events/event-delegation/ for a discussion on delegates.

Hourglass

Hourglass is a Boolean which indicates whether to change the cursor to an hourglass when an event is

handled by the server. This is intended for event whose server processing time may be lengthy. Most

https://api.jquery.com/category/events/
http://www.w3schools.com/tags/ref_eventattributes.asp
https://learn.jquery.com/events/event-delegation/

Event Handling MiServer 3.0

events will be handled so quickly that flipping between the normal cursor/hourglass and back again isn't

noticeable. The default value is 1.

Page

Page specifies the URL to which to direct the event handling. As in the example at the beginning of this

document, most events will be handled in the same page that rendered the original web content.

However, if you want to separate your event handling code to another page, set Page to the URL of

JavaScript

JavaScript is any JavaScript code you would like to be run in the client before the event is signaled to

the server.

jQueryWrap

jQueryWrap is a Boolean which specifies whether to wrap the handler in jQuery syntax so that the

handler is defined and bound when the web page loads. The default is 1.

This setting is for advanced use when you want to generate and manipulate the handler's code for

separate use.

ScriptWrap

ScriptWrap is a Boolean which specifies whether to wrap the handler in an HTML <script> element.

The default is 1.

This setting is for advanced use and is generally used when you want to combine several pieces of

JavaScript into a single <script> element.

ForceInternal

ForceInternal indicates whether the event should be handled as a widget's "internal event". This

setting applies only to 3rd party widgets (jQuery and Syncfusion).

Widgets in JavaScript libraries like jQueryUI and Syncfusion will often have a list of events – we call these

"internal events" because the handler for them is defined within the widget's parameters. Internal

events are handled slightly differently and may have different arguments. The MiServer APIs for these

JavaScript libraries have a public field, InternalEvents, which lists the events that are internal for the

widget at the time the MiServer API was written.

Event Handling MiServer 3.0

The default setting for ForceInternal is ¯1 which indicates to check InternalEvents for whether

to treat the event as an internal event.

A setting of 1 is used to the force the event to be treated as an internal event. You would set this in the

(unlikely) case when the widget has an event that is not listed in InternalEvents. This might happen if

you install an updated version of a JavaScript library and new events have been introduced.

A setting of 0 means do not treat the event as an internal event even if it's listed in InternalEvents.

It's unlikely that you'd ever use this setting, but it's included for completeness.

In general, the nuances of internal events are not important to the MiServer user. But, it is

recommended that the user review the source documentation for a widget to be familiar with which

events are internal and what features may be of interest.

WidgetDef

WidgetDef specifies the syntaxes used by a particular widget library for

 the internal event handler syntax

 the syntax to access the event object

 the syntax to access the widget's object model

 the syntax to access the widget itself

WidgetDef is primarily of interest to people who may want to incorporate additional JavaScript widget

libraries into MiServer.

_.Handler Constructor

h←Add _.Handler [Selectors [Events [Callback [ClientData [Delegates
 [JavaScript [Page]]]]]]]

All arguments to the constructor are positional and optional.

Event Handling MiServer 3.0

Event Handling – ClientData

ClientData allows you to specify data that is to be sent back to the server. The data can be associated

with any element on the page, not just the element to which the event handler is bound.

By default the callback mechanism will return:

By default the

callback mechanism

will return:

_event

the name of the event

_what the id/name, if one exists, of the element that triggered the event
_value the value, if one exists, of the element that triggered the event
_selector the selector specified for the handler
_target1 the id, if one exists, of the innermost element that the event fired upon.

This will normally be the same as _what.
_currentTarget1 the id, if one exists, of the element to which the handler was bound

These fields are directly available in your page when you handle an event.

If you do not specify ClientData, MiServer will also automatically serailize and return any form data

found on the page. If you wish to send other information and any form data, you will need to use

"serialize" as described below.

1 For an example on the use of _target and _currentTarget, see the

/Examples/Techniques/TargetsExample page in the MS3 MiSite.

Event Handling MiServer 3.0

You can specify other information to be sent to the server using the following syntax:

name type [argument] [selector]
If the type does not use an argument, then selector can be in the 3rd position.
In other words:
'data' 'val' '' '#myinput' and
'data' 'val' '#myinput' are equivalent because val does not use an argument.

name the name to give the data on the server side

selector jQuery/CSS selector of or a reference to the element from which to get the data
If selector is omitted, use the element to which the handler is bound if applicable

type the type of data to return
type Returns
attr2 an HTML element attribute
prop1 a JavaScript DOM property
css a CSS setting
is specific settings – see jQuery.is()
html the HTML content of the element
val the value of the element (generally applies only to form elements)
option for jQuery and Syncfusion widgets, this will retreive the value of the option

specified in argument
method for jQuery and Syncfusion widgets, this will return the result of executing

the widget method named in argument
event for jQuery widgets and HTML elements return a stringified representation

of the event object
for Syncfusion widgets, return a stringified representation of the argument
passed to the event handler

argument same as event
this return a stringified representation of the element which triggered the

event
model for jQuery and Syncfusion widgets, this will return either the stringified

representation of the entire widget model, or element specified in
argument

ui same as model
eval the result of the evaluation of a JavaScript string specified in argument by

using the JavaScript eval() function.
js the result of executing the JavaScript specified in argument

This differs from eval in that the JavaScript is executed inline rather than
using the JavaScript eval() function.

string a constant string
serialize the serialization of all input elements in all forms on the page, or the form

specified in selector
⍎ the result of executing the 1↓ of type. This is a shorthand version of js

2 It's useful to understand the difference between HTML attributed and DOM properties.- for a good discussion on
this, see http://lucybain.com/blog/2014/attribute-vs-property/

http://lucybain.com/blog/2014/attribute-vs-property/

Event Handling MiServer 3.0

argument dependent on type
type = argument = Example
attr the attribute to return 'attr' 'title'
css the CSS setting to return 'css' 'font'
html '' 'html'
is the setting to return – see jQuery.is() 'is' ':checked'
val '' 'val'
eval the JavaScript string to evaluate 'eval' '2+2'
string the string to return 'string' 'constant'
event the element of the event object see jQueryUI document
ui the element of the ui object see jQueryUI document
model the element of the model object see Syncfusion document
argument the element of the argument object see Syncfusion document
serialize '' 'serialize'
js the JavaScript to execute 'js' 'alert("Hello");'
⍎ '' '⍎alert("Hello");'

Example:

h←Add Handler ⍝ add an event handler
h.ClientData←('content' 'html' '#div1')
 ('bgcolor' 'css' 'background-color' '#div2')

Returns

 a variable named "content" which contains the HTML content of the element with id "div1"

 a variable named "bgcolor" with the CSS background color of the element with id "div2"

Event Handling - Retrieving Client Data from Callback Functions

Client data can be retrieved in two basic ways:

 Define a public field in your MiPage with the same name as the data you want to retrieve

For instance, in the specification used above

 h.ClientData←('content' '#div1' 'html')
 ('color' '#div2' 'css' 'background-color')
You could defined two fields and they would be populated automatically.

 :field public content
 :field public color

 The other way is to use the Get method to retrieve the data by name. The left argument to Get

is the default value to use if the data element is not found. Again, using the example from

above, the following could be used.

 '???' Get 'content'
 'white' Get 'color'

Event Handling MiServer 3.0

Event Handling – Sending Responses Back to the Client
There are four functions which specify actions to be taken on the client side in response to a callback

function.

r ← selector Replace new
r ← selector Append new
r ← selector Prepend new
r ← Execute javascript

Replace Replaces the HTML content of the element specified by selector with
new

Append Appends new to the HTML content of the element specified by
selector

Prepend Prepends new to the HTML content of the element specified by
selector

Execute Executes javascript string (using JavaScript's eval() function)

selector The selector of the elements to update

new The new content with which to update

javascript A character vector of the JavaScript to execute in the client

Example:

 r ← '#result' Replace _html.h2('Hi')
 r,← Execute 'alert("Happy Birthday!")'
Callback functions must return a result, though the result could be '' if no action is to be taken on the

client side.

